Recommended Measures to Improve Water Quality at Lake Thunderbird

Environmental Engineering Capstone

May 6, 2021

GALLOGLY COLLEGE OF ENGINEERING SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE The UNIVERSITY of OKLAHOMA

PRESENTATION ROAD MAP

INTRODUCTION & HISTORY

- 666 km² (256 mi²) in Cleveland and Oklahoma counties
- Principal tributaries Little River and Hog Creek
- Primary drainage from Norman, Moore, and OKC
- Drinking water to Norman, Del City, and Midwest City

Lake Thunderbird Watershed (OCC 2008)

4

INTRODUCTION & HISTORY

- Sensitive Water Supply (SWS)
- DEQ 303(d) list
- Total Maximum Daily Load (TMDL)
 - Chlorophyll-a (Chl-a)
 - Dissolved Oxygen (DO)
 - Turbidity

METHODS

Methods

METHODS

- OWRB data over last 20 years
 - 30 Parameters
 - Correlations
 - Seasonal Variations
 - Hydrologic Effects

(OWRB 2020)

SAMPLING TRIP

- March 20, 2021
- Sampled sites 1, 2, 4, 5, 6, and 11
 - **Field Tests**
 - Alkalinity lacksquare
 - Hardness
 - Chl-a
 - DO
 - Turbidity
 - Secchi Disk Depth
 - **Laboratory Tests** lacksquare
 - **Total Nitrogen (TN)**
 - **Total Phosphorous (TP)**
 - **Total Suspended Solids (TSS)**

Identify measures to improve Lake Thunderbird's water quality...

MEET OUR TEAM

Heath Orcutt

Tavarez

Cameo Holland Peter Wolbach

DATA ANALYSIS

ENVIRO-SHIELD

SOLUTION

Need to determine the limiting hospieorus!

N:P Ratios from 2000-2015 OWRB data set (Nitrate vs. Ortho-P)

Does an increase in TP indicate an increase in sediment loading?

(2005-2016 OWRB Dataset)

Positive correlation

(2016-2019 OWRB Dataset)

Positive correlation

 \downarrow sediment loading + \downarrow phosphorus loading = \downarrow Chl-a

Limit eutrophication!

- Adapted from 2016 City of Norman "Strategic Water Supply Plan"
- Weighted percentages from COMCD
- Technologies ranked on 1 to 5 scale (1 = lowest, 5 = highest)

RESULTS

	Objective Sub-objective		BB	CGRs	LV	IB	H ₂ O ₂	SC	Р	UI	SRv	CW	FW		
	Affordability Minimize capital cost Minimize life-cycle cost			4			4	1	2	1	2	3	3	5	
	Reduction in volume runoff					1	1		1	1	1	1	2	1	1
	Efficacy	Reductio Watershed BMP:			1	1 1	4	4	5 3	1 5	In-La	ike Tecl	nnolog	y: 📄	
	Reductio Bioretention Basir			าร		1		4	1	1	Const	ructed	Wetlar	ids	
	Environmental Stewardship		tion	3			4	5	2	5	5	4	4	3	
		Minimize	Ainimize permanent ecosystem impacts		5	5	5	4	1	4	4	3	3	4	3
	Technologies/BMPs		BB	CGR	ks LV	/	в Н	20 ²	SC	Р	UI	SRv	CW	FW	
	W	Weighted Scores 3		3.77	3.32	2 2.7	3 3.3	33 2	.54 3	.08	2.55	3.24	2.87	3.46	3.45
	and certainty	Public/po	птісаї ассертаріпту		3	5	5	3	2	5	2	3	5	3	4
	Lifetime Assessment	Temporal	reliability		5	4	2	4	3	3	3	4	2	5	5
	Community Values	Impact or	n non-water supply bene	efits		4	4	3	1	4	4	3	5	3	5
		Reliance	Reliance on natural infrastructure		4	3	4	4	1	1	1	1	5	5	4
		Protection of property rights		2	3	3	2	5	4				5		
		Environmental Equity			1	1	3	1	1		loating Wetlands			2	
		Environm	ental Equity				-								
ENVIRO-SHIELD SOLUTIONS		Access to	ental Equity Nature		5	2	2	3	5	5	(at	temnt	ed hefo	re)	4
ENVIRO-SHIELD SOLUTIONS	Water Quality	Access to Minimize	ental Equity Nature taste and odor potentia		5	2	2	3	54	5	(at	tempt	ed befo	ore)	4
ENVIRO-SHIELD SOLUTIONS	Water Quality Aesthetics	Access to Minimize Address E	ental Equity Nature taste and odor potentia OO levels	1	5 5 3 4	2 1 1	2 1 1	3 1 1	5 4 4	5 5 5	(at	tempto	ed befo	ore)	4 3 3
ENVIRO-SHIELD SOLUTIONS	Water Quality Aesthetics	Access to Minimize Address E	ental Equity Nature taste and odor potentia OO levels w Scores	 	5 3 4 3.71	2 1 1 3.00	2 1 1 2.59	3 1 1 3.29	5 4 4 2.59	5 5 5 3.06	(at 1 2.65	tempt 3 3.12	ed befo	re) 3.29	4 3 3 3.24

BIORETENTION BASINS

ENVIRO-SHIELD SOLUTIONS

Bioretention basin schematic (Hydrology Studio, n.d.)

Bioretention basin during storm event (USEPA, 2013)

- 5% of impervious areas
- Distribute in hydrologically sensitive areas

(Martin-Mikle et al., 2015)

NUTRIENT LOADING

Hog Creek Drainage Basin Little River Drainage Basin 1445 ft Tinker Air Force Base AHOMA OKLAHOMA VELAND Moore Hall Park Hall Parl Norman **Peak TP Loading** 6235 kg/d 2320 kg/d **Peak TP Loading** Average TP Loading kg/d 8.5 Average TP Loading kg/d 2.3

CONSTRUCTED WETLAND

Free water surface and emergent macrophytes schematic (Vymazal, 2017)

ENVIRO-SHIELD

East Fork Wetland in North Texas (NTMWD, n.d.)

Recommended for the second sec

Bioretention Basins										
TP Reduction	TN Reduction	TSS Reduction	Total Area (acres)	Lifetime	Total Cost					
31%	32%	60%	240	20 yrs	\$2.6 Million					
Constructed Wetland Design (Max TP Loadings)										
TP Reduction	TN Reduction	TSS Reduction	Total Area (acres)	Lifetime	Total Cost					
50%	80%	95%	831	40 yrs	\$18.2 Million					

OPPORTUNITIES

- March 29, 2021 EPA Sewer Overflow and Stormwater Reuse Municipal Grants Program
 - 20% of funding to "green infrastructure"
 - Application open

ENVIRO-SHIELD

- March 31, 2021 American Jobs Plan
 - \$56 billion proposed for "upgrading and modernizing America's wastewater, stormwater, and drinking water systems"

Clean Water State Revolving Fund (CWSRF) Loan Program Bioretention roundabout in Bixby, OK (OWRB, n.d.)

MEET OUR TEAM

Sarah Hobson

Rachel Bandy

Monica Ha

Paige Hardman

Kaleb Schwab

DATA ANALYSIS OBJECTIVES

Relate to Treatment Methods

DATA ANALYSIS FINDINGS

- Increase in TP with TSS and lake depth
- Nutrient concentrations increase with lake turnover
- Lag correlation between TP and Chl-a
- Elevated Chl-a in summer
- Horizontal mixing
- 18 ft elevation change over 15 years

DATA ANALYSIS FINDINGS

Loadings From

Little River

Dave & Jim Blue Creeks

Hog Creek

EVALUATION PROCESS

DECISION CRITERIA WEIGHTS

GALLOGLY COLLEGE OF ENGINEERING

SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE The UNIVERSITY of OKLAHOMA WEIGHTED RANKING RESULTS OF SCHOOL OF CIVIL ENGINEERING SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE

Lake Level Strategy	Cost	Effectiveness	Lifetime	O&M	Scale	Public Acceptance	Total
Multiplier	0.25	0.25	0.10	0.10	0.10	0.20	
Constructed Wetlands	3.00	4.00	3.00	4.00	3.00	3.00	3.35
Biomanipulation	4.00	2.00	3.00	3.00	4.00	4.00	3.30
P Inactivation	4.00	4.00	3.00	2.00	2.00	3.00	3.25
Shoreline Revegetation	4.00	2.00	4.00	3.00	3.00	4.00	3.20
Breakwater Systems	4.00	2.00	3.00	3.00	3.00	4.00	3.10
Down Flow Bubble Contact System	2.00	3.50	3.00	2.00	4.00	4.00	3.00
Coagulation Magnetic Separation	4.00	3.00	3.00	2.00	1.00	3.00	2.90
Sediment Dredging	1.00	4.00	3.00	3.00	4.00	1.00	2.40
Sediment Oxidation	2.00	2.50	3.00	2.00	1.00	2.00	2.13

CONCEPTUAL DESIGN

Diagram for Free Surface Horizontal H low West Anded Wetland Design Locations

Effectiveness

- 79% TN
- 50% TP
- 91% TSS

Lifetime

• 20+ years

Cost

- Capital \$4.8 million
- Annual O&M \$790,000
- Total \$28.3 million

Constructed wetland, Pagosa Springs, Colorado

PERVIOUS PAVEMENT

Pavement Type

- Pervious Concrete
- Pervious Asphalt
- Locations
 - Sidewalks
 - Parking Lots
 - New Road Construction

Effectiveness

- 85% TP
- 30% NO₃⁻
- 85% TSS

Standarstonad Beavigue Gorous tesphalt (Gresos Baniholio Bulinating RARD tive, 2020)

CONCEPTUAL DESIGN

Lifetime

• 20+ years

Suggested Area

• 230 Acres

Cost

- Capital \$17 million
- Annual O&M \$184,000
- Total \$22.7 million

Example pervious road

Example pervious sidewalk

MEET OUR TEAM

Kristen Soucheck

ENGINEERING

Hannah Curtis

John Puzz

- 58% of samples >10 µg/L Chl-a
 - Ten-year average: 19.15 μg/L
- 29% of samples >25 NTU turbidity
- Relationship between TSS and TP
 - Stormwater runoff
- Positive relationship between Chl-a and TP
 - Reducing P loading may control algal growth

Relationshipe lost to restrip T Dectrade Eth IFOP concentrations contal Take Thurderbird Lake Thu frater b2000 ft am 200100 Site 2819, Site 1

GALLOGLY COLLEGE OF ENGINEERING

()F

NIVERSITY of OKLAHOMA

VIL ENGINEERING

POTENTIAL SOLUTIONS

- Bioretention Cells
- Sand Filters
- Pervious Pavement with Cisterns
- Shoreline Revegetation
- Constructed Wetlands

EVALUATION CRITERIA

(20%)

(20%)

ALTERNATIVES EVALUATION OF SCHOOL OF CIVIL ENGINEERING SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE

FNGINFFRING

	Cost	Ease of Implementation	Effectiveness	Sustainability	Public Acceptance	Weighted Total
Bioretention Cells	3	3	5	4	5	4.00
Sand Filters	2	3	4	3	3	3.25
Pervious Pavement	3	2	4	2	4	2.90
Shoreline Revegetation	4	4	3	5	5	4.05
Constructed Wetlands	5	4	5	4	4	4.50

WETLANDS DESIGN

- Free water surface wetlands
- 500 acres on Little River
- 400 acres on Hog Creek
- Recommended plant species
 - Softstem bulrush
 - Broadleaf cattail

WETLANDS DESIGN

- Removal efficiencies
 - TSS: >80%
 - TN: 50%
 - TP:
 - 43% at Little River
 - 62% at Hog Creek
- 20 year design life
- Total capital cost: \$13.1 million
- Total present worth: \$25.9 million

Sediment and TP loadings into Lake Thunderbird by catchment (Dynamic Solutions 2013)

REVEGETATION DESIGN

- •5% of shoreline (22,700 ft)
- Erosion categories 4 and 5
- •Branchbox and Coir Geotextile Roll (CGR) breakwater systems
- Recommended plant species
 - Softstem bulrush
 - Prairie cordgrass
 - Black willow

(NRCS n.d.) (Bruce Marlin 2007) Example of Category 5 erosion at Lake Thunderbird (Allen 2001)

REVEGETATION DESIGN

- •21,800 ft³ soil retained
- Nutrient uptake
 - •720 kg N/year
 - 180 kg P/year
- •20 year design life
- •Total capital cost: \$716,200
- •Total present worth: \$950,400

Sediment accumulation behind branchbox between April 2003 (top) and April 2004 (bottom) at Lake Thunderbird (OWRB 2005)

CONCLUSIONS

Conclusions

CONCLUSIONS

Recommended Measures...

Constructed Wetland 50% | TP, 80% | TN, \$1852 Mullion

Bioretention Basins

352.6 101 ilion TN, 60% ↓ TSS

Constructed Wetlands 50% (TP, 79% (TN, 91% \$28.3 Million

Pervious Pavement 85% 22.7 ₩111000⁻⁷, 85% ↓ TSS JAY ENGINEERING

Constructed Wetlands 52% ↓ TP, 50% ↓ TN, \$ 250% Million

Shoreline Revegetation

↓ 7**3950,400**r, ↓ 180 kg P/year Central Oklahoma Master Conservancy District (COMCD)

- Kyle Arthur, Amanda Nairn, Casey Hurt
- **Oklahoma Water Resources Board (OWRB)**
 - Julie Chambers

Center for Restoration of Ecosystems and Watersheds

• Nick Shepherd

School of Civil Engineering and Environmental Science

Molly Smith

Center for Restoration of Ecosystems and Watersheds University of Oklahoma

State of Oklahoma

BA R

Thank You! Any Questions?